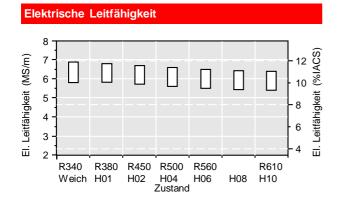


Wieland-L49

CuNi9Sn2 | C72500 | CW351H

CuNi9Sn2 wurde von Bell Laboratories entwickelt, um Feldausfällen durch Spannungsrisskorrosion zu begegnen. Die Legierung wird häufig verwendet in der Telekommunikationsindustrie und für Steckverbinder. Die Kombination aus sehr gutem Ermüdungsverhalten, hervorragender Relaxationsbeständigkeit und Korrosionsbeständigkeit erlaubt ihren Einsatz auch unter widrigen Umgebungsbedingungen.


Zusammensetzung (Richtwerte)						
Ni	9 %					
Sn	2 %					
Cu	Rest					

Physikalische Eigenschaften (Richtwerte bei Raumtemperatur)									
Elektrische Leitfähigkeit	6,5	MS/m	11	%IACS					
Wärmeleitfähigkeit	55	W/(m·K)	32	$Btu \cdot ft / (ft^2 \cdot h \cdot \P)$					
Temperaturkoeffizient des elektrischen Widerstands*	0,6	10 ⁻³ /K	0,3	10 ⁻³ /℉					
Wärmeausdehnungskoeffizient*	16,5	10 ⁻⁶ /K	9,2	10 ⁻⁶ /F					
Dichte	8,89	g/cm ³	0,321	lb/in³					
Elastizitätsmodul	137	GPa	20.000	ksi					
Spezifische Wärme	0,375	J/(g·K)	0,098	Btu/(lb⋅℉)					
Querkontraktionszahl	0,34		0,34						

^{*} Zwischen 0 und 300 ℃

Mechanische Eigenschaften (Werte in Klammern nur zur Information)								
Zustand	Zugfestigke	Zugfestigkeit R _m		ngrenze R _{p0,2}	Bruchdehnung A ₅₀	Härte HV		
	MPa	ksi	MPa	ksi	%			
R340	340-410	49-59	≤ 250	≤ 36	≥ 30	(75-110)		
R380	380-470	55-68	≥ 200	≥ 29	≥ 10	(110-150)		
R450	450-530	65-77	≥ 370	≥ 54	≥ 6	(140-170)		
R500	500-580	73-84	≥ 450	≥ 65	≥ 3	(160-190)		
R560	560-650	81-94	≥ 520	≥ 75	≥ 2	(180-210)		
R610	≥ 610	≥ 88	≥ 580	≥ 84	-	(≥ 190)		
Weich	310-450	45-65	(145)	(21)	(35)			
H01*	380-515	55-75	(435)	(63)	(15)			
H02*	450-550	65-80	(470)	(68)	(10)			
H04*	515-620	75-90	(550)	(80)	(3)			
H06*	550-655	80-95	(585)	(85)	(2)			
H08*	585-690	85-100	(620)	(90)	(≥ 1)			
H10*	620-725	90-105	(655)	(95)	(≤ 1)			

^{*} Nach ASTM B122

12 06 10 O Biegekante ⊥ Walzrichtung O Biegekante II Walzrichtung O O O O O O

R450

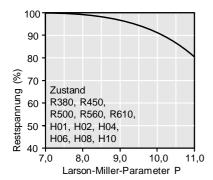
Biegbarkeit (Banddicke s ≤ 0,5 mm)

R380

R340

R500

 \Diamond


R560

R610

Wieland-L49

CuNi9Sn2 | C72500 | CW351H

Thermische Spannungsrelaxation

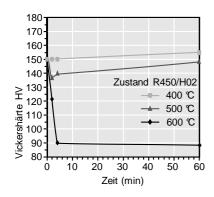
Restspannung nach thermischer Relaxation in Abhängigkeit vom Larson-Miller-Parameter P

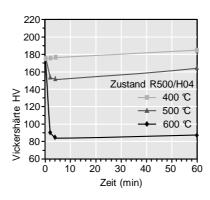
(F. R. Larson, J. Miller, Trans ASME74 (1952) 765–775) berechnet durch:

 $P = (20 + \log(t))^*(T + 273)^*0,001.$

Zeit t in Stunden, Temperatur T in ℃.

Beispiel: P = 9 ist äquivalent zu 1000 h/118 ℃.


Gemessen an thermisch entspannten Bandproben nach der Ringmethode.


Die Gesamtrelaxation ist abhängig von der aufgebrachten Spannung. Zusätzlich wird sie durch Kaltverformung z. T. deutlich erhöht.

Biegewechselfestigkeit

Die Biegewechselfestigkeit ist definiert als die maximale Biegespannungsamplitude, bei der ein Werkstoff unter symmetrischer Wechselbelastung 10^7 Lastspiele erträgt ohne zu brechen. Sie ist abhängig vom geprüften Festigkeitszustand und beträgt etwa 1/3 der Zugfestigkeit R_m .

Erweichungsbeständigkeit

Vickershärte nach Wärmebehandlung (typische Werte)

Lieferbare Ausführungen

- Bänder in Ringen mit Außendurchmesser bis 1400 mm
- Gespulte Bänder mit
 Spulengewichten bis 1,5 t
- Multicoil bis 5 t

- Feuerverzinnte Bänder
- Profilgefräste Bänder
- Bleche
- Schutzbeschichtete
 Bleche und Bänder

Lieferbare Abmessungen

- Banddicke ab 0,10 mm, dünnere Abmessungen auf Anfrage
- Bandbreite ab 3 mm, iedoch mindestens 10 x Banddicke

Wieland-Werke AG | Graf-Arco-Straße 36 | 89079 Ulm | Germany info@wieland.com | wieland.com

Wieland Rolled Products North America | 4803 Olympia Park Plaza, Suite 3000 | Louisville, Kentucky | USA infona@wieland.com | wieland-rolledproductsna.com